Computer Science



A first course in programming, software development, and computer science. Introduces computing fundamentals and an appreciation for computational thinking. No previous programming experience required. Note: CS 1110, 1111, 1112, 1113, and 1120 provide different approaches to teaching the same core material; students may only receive credit for one of these courses. "



A first course in programming, software development, and computer science. Introduces computing fundamentals and an appreciation for computational thinking. Prerequisite: Students should have some experience with programming. Note: CS 1110, 1111, 1112, 1113, and 1120 provide different approaches to teaching the same core material; students may only receive credit for one of these courses. "



A first course in programming, software development, and computer science. Introduces computing fundamentals and an appreciation for computational thinking. Prerequisite: Students must have no previous programming experience. Note: CS 1110, 1111, 1112, 1113, and 1120 provide different approaches to teaching the same core material; students may only receive credit for one of these courses. "



A first course in programming, software development, and computer science. Introduces computing fundamentals and an appreciation for computational thinking. Special domain topics and materials will differ by section and semester. Note: CS 1110, 1111, 1112, 1113, and 1120 provide different approaches to teaching the same core material; students may only receive credit for one of these courses. "



Introduces discrete mathematics and proof techniques involving first order predicate logic and induction. Application areas include finite and infinite sets, elementary combinatorial problems, and graph theory. Development of tools and mechanisms for reasoning about discrete problems. Prerequisite: CS 1110, 1111, 1112 or 1120 with a grade of C- or higher. "



A second course in computing with an emphasis on modern software development and principles central to computer science. Topics include software requirements, testing, object-oriented design, abstraction, encapsulation, recursion, and time-complexity. Prerequisite: CS 1110, 1111, 1112, or 1120 with a grade of C- or higher. "



Introduces programs and data representation at the machine level. Data structuring techniques and the representation of data structures during program execution. Operations and control structures and their representation during program execution. Representations of numbers, arithmetic operations, arrays, records, recursion, hashing, stacks, queues, trees, graphs, and related concepts. Prerequisite: CS 2102 and CS 2110, both with grades of C- or higher. "



Introduces computation theory including grammars, finite state machines, pushdown automata, and Turing machines. Prerequisites: CS 2102 and CS 2110 both with grades of C- or higher "



Includes the organization and architecture of computer systems hardware; instruction set architectures; addressing modes; register transfer notation; processor design and computer arithmetic; memory systems; hardware implementations of virtual memory, and input/output control and devices. Prerequisite: CS 2150 with a grade of C- or higher. CS 2330 recommended. Students may not receive credit for both CS 3330 and ECE 3430. CPE majors cannot use this course to fulfill their program of study. "



Introduces the analysis of algorithms and the effects of data structures on them. Algorithms selected from areas such as sorting, searching, shortest paths, greedy algorithms, backtracking, divide-and-conquer, and dynamic programming. Data structures include heaps and search, splay, and spanning trees. Analysis techniques include asymtotic worst case, expected time, amortized analysis, and reductions between problems. Prerequisite: CS 2102 and 2150 with grades of C- or higher, and APMA 1090 or MATH 1210 or MATH 1310. "



A first course in communication networks for upper-level undergraduate students. Topics include the design of modern communication networks; point-to-point and broadcast network solutions; advanced issues such as Gigabit networks; ATM networks; and real-time communications. Cross-listed as ECE 4457. Prerequisite: CS 3330 or ECE 3430 "



Content varies annually, depending on instructor interests and the needs of the department. Similar to CS 5501 and CS 7501, but taught strictly at the undergraduate level. Prerequisite: Instructor permission; additional specific requirements vary with topics. "



Viruses, worms, and other malicious software are an ever-increasing threat to computer systems. There is an escalating battle between computer security specialists and the designers of malicious software. This course provides an essential understanding of the techniques used by both sides of the computer security battle. Prerequisite: CS 2150 with a grade of C- or above. "



Introduces artificial intelligence. Covers fundamental concepts and techniques and surveys selected application areas. Core material includes state space search, logic, and resolution theorem proving. Application areas may include expert systems, natural language understanding, planning, machine learning, or machine perception. Provides exposure to AI implementation methods, emphasizing programming in Common LISP. Prerequisite: CS 2150 with grade of C- or higher. "



Investigates the architectural foundations of the various cloud platforms, as well as examining both current cloud computing platforms and modern cloud research. Student assignments utilize the major cloud platforms. Prerequisite: CS 2150 with grade of C- or higher. "



Introduces the fundamental concepts for design and development of database systems. Emphasizes relational data model and conceptual schema design using ER model, practical issues in commercial database systems, database design using functional dependencies, and other data models. Develops a working relational database for a realistic application. Prerequisite: CS 2150 with grades of C- or higher. "

Professors