Materials ScienceEngineering



The collective properties of the materials in an engineering structure often dictate the feasibility of the design. Provides the scientific foundation for understanding the relations between the properties, microstructure, and behavior during use of metals, polymers, and ceramics. Develops a vocabulary for the description of the empirical facts and theoretical ideas about the various levels of structure from atoms, through defects in crystals, to larger scale morphology of practical engineering materials. "



Includes basic electrochemical principles, terminology, definitions and examples of corrosion, batteries and fuel cells, as well as the thermodynamics and kinetic principles of electrochemistry applied to corrosion, batteries and fuel cells. Discusses the eight forms of corrosion and various battery and fuel cell systems. Provides instruction on the various corrosion mitigation methods such as cathodic protection, inhibitors, and coatings as well as design issues in corrosion, batteries and fuel cells at the materials science and engineering level. "

Professors